Computational Research Engine (CORE™)

CORE case studies

Learn more about our comprehensive in silico platform. 

Helomics is now Predictive Oncology.

Case study 1

How does CORE work?

Two pharmaceutical companies wanted to compare the cost and accuracy of predictive models developed using CORE’s active machine learning methods, to those using standard industry methods. EPA’s ToxCast dataset was used as a simulated “experimental space” for the test.

  • A predictive model of the experimental space was developed using the current industry standard analytic methods. Using several machine
    learning approaches – RandomForest and LASSO regression– it was
    necessary to explore 80% of the experimental space to reach the
    maximum predictive accuracy when compounds were chosen for
    experimentation based on their chemical diversity.
  • However, it only took 10% of the experimental space for CORE to reach this level of predictive accuracy.

Given the EPA estimate that $6M was spent on the experiments to develop ToxCast, when monetized, current industry methods would have cost $4.8M to explore and achieve the level of accuracy that CORE would have achieved for $600K. An 87% savings!

Any further experimentation directed by CORE resulted in an accuracy that was better than standard machine learning methods regardless of experiment selection methods.

Case study 2

Reduced experimentation by leveraging historical experimental results.

A large pharmaceutical company wanted to compare the efficiency of CORE’s active machine learning methods to standard industry methods for predicting hepatotoxicity. Their high content screening (HCS) data from a recently published study was used.

  • A predictive model of the experimental space was developed using the current industry standard analytic methods. About 50% of the
    experiments executed in the Study were needed to create the most
    accurate predictive model.
  • By comparison, it took only 30% of the experimental space for CORE to reach this same level of accuracy predicting hepatotoxicity.

While it took 40% less experimentation, the savings could not be estimated as costs were not made available. More interestingly, collaborators then suggested that methods be tested for predicting toxicity without using “new” experimental results from HCS screens. This is as if the models were developed entirely in silico without novel experimentation. In order to use only our extensive database of prior research (CORE knowledgebase) on this problem, a new, sophisticated method was designed that works with extremely sparse data sets. Using this method with the dataset and no current experimental results, CORE developed a model with higher accuracy than any methods previously tested. This shows that the knowledge gathered in their new HCS experiments was actually already in the CORE knowledgebase, but it had been gathered in different experiments, testing different compounds. The active learning methods used by CORE enabled us to capture that knowledge effectively.

Case study 3

Reduced compound synthesis required to discover promising drug leads.

A smaller pharmaceutical company specializing in CNS drug development wished to assess how well CORE would have performed on a completed drug discovery campaign had it been used to direct experimentation. The pharma company conducted the campaign and identified a lead to advance after synthesizing a large number of compounds. In our simulations, CORE used their historical data to simulate an active learning approach as if it was directing compound synthesis.  So all of their data was hidden from CORE and only revealed when CORE recommended a batch of compound be “synthesized.” Random selection required that on average 42 compounds be synthesized in order to predict the ideal compound. The “industry standard approach” required on average 25 compounds to be synthesized to produce an optimal lead. CORE required an average of only 18 compounds be synthesized to produce the optimal lead to advance.

This represents a 30-50% reduction in the number of synthesized compounds that would have needed to be made.

CORE and Active Learning publications:

  • Josh D. Kangas, Naik, Armaghan W., & Murphy, Robert. F., Efficient Discovery of Responses of Proteins to Compounds Using Active Learning, BMC Bioinformatics, 15(1), 143, May, 2014.
  • Armaghan W. Naik, Kangas, Joshua D., Langmead, Christopher J. & Murphy, Robert F., Efficient Modeling and Active Learning Discovery of Biological Responses. PLoS ONE 8(12) e83996, December 2013.
  • Robert F. Murphy, An Active Role for Machine Learning in Drug Development, Nature Chemical Biology, June 2011.
  • J. D. Kangas, Naik, A. W. & Murphy, R. F., Active Learning to Improve Efficiency of Drug Discovery and Development, SLAS 2014 poster describing the capabilities and uses of the CORE.
  • R. J. Brennan, Kangas, J. D., Schmidt, F., Khan-Malek, R. & Keller, D. A., Applying an Active Machine Learning Process to Build Predictive Models of In Vivo Toxicity from ToxCast Screening Data, ToxCast Data Summit, September 2014. Additional Information

Start a PEDAL pilot program today

Complete the form and our PEDAL expert will be in touch to discuss customized solutions for your needs.

News & resources

David S. Smith


David S. Smith, JD, is a life sciences and intellectual property attorney, veteran biotech industry executive and leading authority on the legal issues surrounding the therapeutic use of human tissue and cells. He has extensive transactional experience, venture financings and regulatory matters for life sciences companies and investors.

Mr. Smith frequently speaks on matters related to the commercial development of tissue, cell and stem cell technologies, and has authored extensively on topics like human tissue therapies and tissue engineering research. He currently serves on the Board of Directors with Foundation for Cell and Gene Medicine; is a current fellow and past member of the executive committee of Tissue Engineering and Regenerative Medicine International Society; was a member of the Board of Directors of the Pennsylvania Biotechnology Association; and was a past officer of the Pittsburgh Tissue Engineering Initiative.

“ Having worked in the healthcare industry for over 30 years, helping the companies who deliver patient care utilize the best technology, improve their processes and receive all the revenue they can within all compliance standards;
I was excited to join Predictive Oncology’s Board of Directors in helping to guide this exciting company with all of their cutting edge capabilities for improving
the health care of patients
with cancer.”

Pamela Bush, Ph.D.

SVP, Strategic Sales and Business Development,

At Predictive Oncology

Pamela Bush comes with more than twenty years of experience in venture creation, finance, and business development in the life sciences industry. At POAI, she leads the sales efforts and business development activities across the portfolio.

Before Predictive Oncology

Prior to joining POAI Pamela worked at Eli Lilly & Company in various roles including Corporate Business Development, Finance and Patient Services. In addition to her Lilly work experience, Pamela has worked in economic development, academia, and business consulting supporting the creation and growth of 80+ life sciences start-ups.

“ POAI has developed solutions to help biopharma partners increase the probability of success of their oncology pipeline.”

Carnegie Mellon University

Ph.D., Molecular Biology
MBA, Tepper School of Business

Lawrence J. DeLucas, Ph.D

Predictive Oncology
President, Soluble Biotech
At Predictive Oncology

Dr. DeLucas is the Vice president of Operations for Predictive Oncology and President and co-founder of Soluble Biotech, Inc. DeLucas is currently working to complete development of GMP facilities at Soluble Biotech and at TumorGenesis. In addition, he oversees Soluble Biotech’s solubility and stability contracts for numerous pharmaceutical/biotech companies.

Before Predictive Oncology

From 1981-2016 Dr. DeLucas was a faculty member at the University of Alabama at Birmingham (UAB) where he served as a Professor in the School of Optometry, Senior Scientist and Director of the Comprehensive Cancer Center X-ray Shared Facility, and Director of the Center for Structural Biology. Dr. DeLucas received five degrees from UAB culminating in a Doctor of Optometry degree and a Ph.D. degree in Biochemistry. He also received honorary Doctor of Science degrees from The Ohio State University, Ferris State University, the State University of New York (SUNY), and the Illinois College of Optometry. He has published 164 peer-reviewed research articles in various scientific journals, co-authored and edited several books on protein crystal growth and membrane proteins and is a co-inventor on 43 patents involving protein crystal growth, novel biotechnologies and structure-based drug design. DeLucas was a payload specialist NASA astronaut and member of the 7-person crew of Space Shuttle Columbia for Mission “STS-50”, called the United States Microgravity Laboratory-1 (USML-1) Spacelab mission. Columbia launched on June 25, 1992, returning on July 9.  In 1994 and 1995, Dr. DeLucas served as the Chief Scientist for the International Space Station at NASA Headquarters in Washington, D.C. In 1999, Dr. DeLucas was recognized as one of the scientists who could shape the 21st century in an article published by “The Sunday Times” of London titled “The Brains Behind the 21st Century.”  In 2004, he was recognized as a Top Ten Finalist for the Entrepreneur of the Year award from the Birmingham Business Journal. 

“ Soluble Biotech is continually demonstrating to pharmaceutical and biotech companies the significant value of its novel HSC technology for optimizing protein therapeutic formulations to treat a variety of chronic and infectious diseases. ”

  • Five degrees from Univ. of Alabama at Birmingham (UAB): B.S. Chemistry, M.S. Chemistry, B.S. Physiological Optics, O.D. Optometry, Ph.D Biochemistry
  • Published 164 peer-reviewed research articles in various scientific journals
  • 1993-2016: Director of the UAB Comprehensive Cancer Center X-ray Shared Facility, and Director of the Center for Structural Biology
  • NASA Astronaut, flew on Columbia Space Shuttle
  • 1994-1995: Appointed Chief Scientist for the International Space Station at NASA HQ

Arlette Uihlein, MD, FCAP, FASCP

Dr. Arlette Uihlein is Senior Vice President of Regulatory Affairs and Quality for Predictive Oncology and Site Leader of Helomics, serving as the Vice President of Operations, Pathology Services and Medical Director of Helomics® Clinical and Research Labs since 2011. Dr. Uihlein is Board Certified in Anatomic and Clinical Pathology, Cytopathology and Family Medicine. Dr. Uihlein completed her Pathology Residency at Allegheny General Hospital, where she served as Chief Resident in Pathology and completed Fellowships in Cytopathology and Surgical Pathology. During that time, she conducted extensive clinical research involving molecular pathology diagnostic and predictive markers, imaging of solid tumors, and novel applications of cellular tumor markers. While serving as Medical Director at Helomics, a CLIA and New York State certified lab, Dr. Uihlein has published research in molecular assay development, lab automation, and tissue and cell processing. She is a Designated Civil Surgeon for the U.S. Dept. of Justice and a certified Medical Review Officer for the Department of Transportation. She is a Fellow of the College of American Pathologists and the American Society of Clinical Pathology, NYSDOH Certificate Qualified, and a member of ASCO.

“ At Helomics we’re delivering better-informed decision making saving pharma time and money, while providing cancer patients with appropriate therapies.”




Medical College of Ohio
Doctor of Medicine

Baldwin-Wallace University
BS, Biology

Richard Gabriel, BS, MBA

Predictive Oncology
Site Leader, TumorGenesis
At Predictive Oncology
My role at Predictive Oncology is to bring the business sense to managing Research and Development programs at all our companies. To seek new ways and opportunities to commercialize exciting new technologies that we have built, licensed, acquired, or are developing through our own research and development. The success of any company is to get the research off the bench and to the customers. That is what I do at POAI and help the other companies as well.
Before Predictive Oncology
Prior to starting his first company in 1984 and registering with the FDA a pilot plant facility to make pharmaceutical actives, Mr. Gabriel managed a $50 million product line for W.R. Grace, developed new marketing and sales strategies for Ventron a Division of Morton Thiokol, research work at Ashland Chemical for pressure sensitive adhesives and plant scale-up. Since then, he ran a genetics company, built three GMP/Research facilities, and helped 5 drugs reach their markets in AIDS and cancer. Real expertise in cGMP process scale-up and compliance. Completely understand the needs of an API manufacturing facility and build processes that are scalable, environmentally acceptable, and safe. 3 FDA inspections with no 483’s, ISO certification, DEA registration, DoD compliance, NCI contractor and inventor. Has also broad-based experience in start-up companies and how to make them operational and profitable. 7 years of Team set-up, R&D management, and implementation for 165-person (85 PhD’s and Engineers) company (Pharm-Eco) and lecturer on cGMP and Teams within the Pharmaceutical Industry.

“ Patients are always first, is our driving force. Oncology is a tough space, and we are determined to bring the best validated science to help cancer patients and as our CEO says, ‘Eliminate Cancer.’ That takes teamwork and a lot of smart hard-working people, our team members at POAI are up to the challenge. ”



Suffolk University
Executive MBA Program

Ohio Dominican College
BS, Chemistry

Ohio State University
Microbiology and Virology

University of Cincinnati
Associates Degree, Liberal Arts

Bob Myers, BBA, MBA

Predictive Oncology
Site Leader, Skyline Medical
At Predictive Oncology

Executive Officer, Compliance Officer, Corporate Secretary, and member of the Senior Leadership Team. Responsible for Finance, Administration, Human Resources, Investor Relations, and IT. Skyline Medical Site Leader.

Before Predictive Oncology

Numerous years as CEO/Controller consultant including medical devices companies. Executive positions with CES Computer Solutions, Computer Accomplishments, Hi-Tech Stationary & Printing, Capital Distributors Corp, International Creative Management American Express, Showtime Entertainment and public accounting with Laventhol & Horwath, CPA’s.

“ It’s a privilege to work with a highly talented team to pursue oncology advances, while protecting and increasing shareholder value. ”


Adelphi University
MBA, Finance

Hofstra University
BBA, Public Accounting 

Raymond Vennare

Predictive Oncology
At Predictive Oncology

Raymond F. Vennare became Predictive Oncology’s CEO and Chairman of the Board on November 1, 2022. He has served on the Board of Directors since September of 2021.

Mr. Vennare brings more than thirty years of experience as an accomplished senior executive, board director and biotechnology entrepreneur. As a seasoned professional who has founded, built and managed multiple companies on behalf of institutional investors, private foundations and research institutions, Mr. Vennare has a long history of leading companies that range from bioinformatics, diagnostics and therapeutic drug delivery to FDA-cleared medical devices. Throughout his career, Mr. Vennare has played a key role in the capitalization, development and commercialization of innovative and novel technologies.

Since 2015, Mr. Vennare has served as CEO and Chairman of Cvergenx, Inc., a genomic informatics company developing decision-support tools for radiation oncology, and is currently an Investment Partner in Inventeur, LLC, a holding company of medical technologies in anesthesiology. Mr. Vennare’s previous experience includes co-founding ThermalTherapeutic Systems, Inc., where he served as President and Chief Executive Officer, President and Chief Executive Officer of ImmunoSite, Inc., Senior Vice President and Chief Information Officer of TissueInformatics, Inc., and President of VS/Interactive.


Mr. Vennare earned his undergraduate degree from the University of Pittsburgh (BA) and holds graduate degrees from Duquesne University (MS) and Case Western Reserve University (MA).

What we do for our customers today will directly impact the lives of those patients who may benefit by these discoveries in the future.”